Problem 37: Truncatable Primes
The number 3797 has an interesting property. Being prime itself, it is possible to continuously remove digits from left to right, and remain prime at each stage: 3797, 797, 97, and 7. Similarly we can work from right to left: 3797, 379, 37, and 3.
Find the sum of the only eleven primes that are both truncatable from left to right and right to left.
NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes.
The Catch
How to manipulate the digits of a number to check if it is prime truncatable.
The Light
Parsing the number into a String to manipulate the digits and then parsing it back to integers is an inefficient method. Observe the following:
3797 / 10 = 379
3797 / 100 = 37
3797 / 1000 = 3
Dividing the number by multiples of 10 truncates digits from the right.
3797 % 10 = 7
3797 % 100 = 97
3797 % 1000 = 797
Take a modulo of the number by multiples of 10 truncates digits from the left.
Use prime checking method in Problem 3 to determine primness.
The Code
public class Problem37 { public static void main(String[] args) { int count = 0; int sum = 0; int ten = 10; boolean leftTrunc = true; boolean rightTrunc = true; for(int n = 11; count != 11; n += 2) { if(isPrime(n)) { while(ten < n) { if(!isPrime(n/ten)) { leftTrunc = false; break; } if(!isPrime(n%ten)) { rightTrunc = false; break; } ten *= 10; } if(leftTrunc && rightTrunc) { ++count; sum += n; } } leftTrunc = true; rightTrunc = true; ten = 10; } System.out.println("Sum = " + sum); } public static boolean isPrime(int n) { if( n < 2 ) return false; if(n % 2 == 0 && n != 2) return false; for( int i = 3; i * i <= n; i += 2) { if(n % i == 0) return false; } return true; } }